1129. Sesquiterpenoids. Part III.¹ The Stereochemistry of Santonin: X-Ray Analysis of 2-Bromo-a-santonin²

By J. D. M. ASHER and G. A. SIM

X-Ray analysis of 2-bromo- α -santonin has defined the stereochemistry of α -santonin as (II; R = H). Crystals of the bromo-derivative are orthorhombic, space group $P2_12_12_1$, and have four molecules of $C_{15}H_{17}BrO_3$ in the unit cell of dimensions a = 7.34, b = 23.34, c = 8.28 Å. The crystal structure was solved by the heavy-atom method, and the atomic co-ordinates were refined by Fourier and least-squares calculations. The final value of the discrepancy R over 1277 independent reflexions was 15.2%.

THE sesquiterpenoid lactone α -santonin has been the subject of chemical investigation for more than a century.³ The constitution was established by classical degradative methods⁴ and confirmed later by synthesis.⁵ Most of the stereochemistry was unambiguously established, but the configuration at position 11 led to controversy,⁶ though opinion generally favoured the β -methyl orientation.⁷

In Part II ¹ we defined the stereochemistry of 2-bromodihydroisophoto- α -santonic lactone acetate as that shown in (I) with the configuration of the 13-methyl group opposite to that previously accepted.⁷ Barton and his co-workers⁸ demonstrated that epimerisation at C(11) does not occur in the sequence of reactions involved in the conversion of

 α -santonin into bromodihydroisophoto- α -santonic lactone acetate, and it thus appeared that the stereochemistry of α -santonin must be as in (II; R = H). In order to obtain incontrovertible proof of the revised configuration, we undertook an X-ray crystal-structure analysis of 2-bromo- α -santonin, and our results established the constitution and relative stereochemistry shown in (II; R = Br). It follows that the stereochemistry of α -santonin is indeed that in (II; R = H), the absolute configuration shown being firmly established chemically.7 During our study, Nakazaki and Arakawa obtained further support for the α -methyl configuration at position 11 by the degradation of α -santonin to (+)-benzoylalanine.9

The crystal structure of 2-bromo- α -santonin was elucidated by the usual phasedetermining heavy-atom method.¹⁰ The proximity of the x- and z-co-ordinates of the

¹ Part II, J. D. M. Asher and G. A. Sim, J., 1965, 1584.

² Preliminary communication, Proc. Chem. Soc., 1962, 335.

³ For earlier literature see J. L. Simonsen and D. H. R. Barton, "The Terpenes," Cambridge University Press, 1952, vol. III.

⁴ G. R. Clemo, R. D. Haworth, and E. Walton, J., 1929, 2368; 1930, 1110; G. R. Clemo and

⁴ G. R. Clemo, R. D. Haworth, and E. Walton, J., 1929, 2368; 1930, 1110; G. R. Clemo and R. D. Haworth, J., 1930, 2579.
⁵ Y. Abe, T. Harukawa, H. Ishikawa, T. Miki, M. Sumi, and T. Toga, Proc. Japan Acad., 1954, 30, 116, 119; J. Amer. Chem. Soc., 1953, 75, 2567; 1956, 78, 1416.
⁶ E. J. Corey, J. Amer. Chem. Soc., 1955, 77, 1044; W. Cocker and T. B. H. McMurry, J., 1955, 4430; T. Miki, J. Pharm. Soc. Japan, 1955, 75, 416.
⁷ W. Cocker and T. B. H. McMurry, Tetrahedron, 1960, 8, 181.
⁸ D. H. R. Barton, T. Miki, J. T. Pinhey, and R. J. Wells, Proc. Chem. Soc., 1962, 112; D. H. R. Barton, J. E. D. Levisalles, and J. T. Pinhey, J., 1962, 3472.
⁹ M. Nakazaki and H. Arakawa, Proc. Chem. Soc., 1962, 151.
¹⁰ (a) J. M. Robertson and I. Woodward, J., 1937, 219; 1940, 36; (b) G. A. Sim, in "Computing Methods and the Phase Problem in X-Ray Crystal Analysis," ed. R. Pepinsky, J. M. Robertson, and I. C. Speakman. Pergamon, Oxford, 1961, p. 227. J. C. Speakman, Pergamon, Oxford, 1961, p. 227.

9 I

bromine atom to the special value 1/4 introduced spurious planes of symmetry in the first three-dimensional electron-density distribution, and, as in our analysis of 2-bromodihydroisophoto- α -santonic lactone acetate,¹ made the unambiguous choice of atomic sites difficult. The recognition that the cyclohexadienone ring system lay approximately in the *bc*-plane allowed us to disentangle a major fraction of the molecule from spurious images, and permitted the normal process of Fourier refinement to proceed. Final refinement of the positional and thermal atomic parameters by the method of least squares reduced the average discrepancy between measured and calculated structure amplitudes (*R*) to $15\cdot2\%$ over 1277 observed reflexions.

The final electron-density distribution over one molecule is shown in Figure 1 as superimposed contour sections drawn parallel to (100). The atomic arrangement corresponding to this electron-density distribution is explained in Figure 2. The final atomic co-ordinates are listed in Table 1, and the interatomic distances and valency angles in Table 2. The

FIGURE 1. The final three-dimensional electron-density distribution for 2-bromo- α -santonin, shown by means of superimposed contour sections drawn parallel to (100). Contours around the bromine atom are at intervals of 4e Å⁻³ and around the other atoms are at intervals of 1e Å⁻³

FIGURE 2. Atomic arrangement corresponding to Figure 1

Table	1
-------	---

Atomic co-ordinates (origin of co-ordinates as in "International Tables "*)

Atom	x a	y b	z/c	Atom	x a	y b	z c	Atom	x a	y b	z c
C(1)	0.2283	0.2590	0.1818	C(8)	0.4485	0.4067	0.1568	C(14)	0.2214	0.3045	0.6881
C(2)	0.2292	0.2188	0.2920	C(9)	0.4087	0.3444	0.1238	C(15)	0.0552	0.3468	0.1346
C(3)	0.2309	0.2332	0.4720	C(10)	0.2322	0.3191	0.2096	O(16)	0.2234	0.1986	0.5682
C(4)	0.2326	0.2944	0.5043	C(11)	0.4672	0.4730	0.4175	O(17)	0.2712	0.4196	0.5775
C(5)	0.2391	0.3349	0.3926	C(12)	0.3948	0.4633	0.5779	O(18)	0.4189	0.4876	0.7097
C(6)	0.2668	0.3980	0.4132	C(13)	0.6763	0.4966	0.4267	\mathbf{Br}	0.2255	0.1381	0.2453
C(7)	0.4452	0.4146	0.3400								

 \ast '' International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, 1952, vol. I.

standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals (see Experimental section) and are given in Table 3; from the results the average e.s.d. of a carbon-carbon or carbon-oxygen bond length is about 0.04 Å, and the average e.s.d. of a valency angle about 3° .

The average sp^3 -carbon- sp^3 -carbon single bond length of 1.55 Å is in excellent agreement with the value of 1.545 Å in diamond. The average carbon-carbon double bond ength, 1.32 Å, is identical with that reported for p-benzoquinone.¹¹

¹¹ J. Trotter, Acta Cryst., 1960, 13, 86.

The arrangement of molecules in the crystal as seen in projection along the *a*-axis

Figure 3.

TABLE 2

Interatomic distances (Å) and angles

Intramolecular bonded distances

$\begin{array}{ccccc} C(1){-}C(2) & \dots & \\ C(1){-}C(10) & \dots & \\ C(2){-}Br & \dots & \\ C(2){-}C(3) & \dots & \\ C(3){-}C(4) & \dots & \\ C(3){-}O(16) & \dots & \end{array}$	$1.31 \\ 1.42 \\ 1.92 \\ 1.53 \\ 1.45 \\ 1.14$	$\begin{array}{cccc} C(4)-C(5) & \dots \\ C(4)-C(14) & \dots \\ C(5)-C(6) & \dots \\ C(5)-C(10) & \dots \\ C(6)-C(7) & \dots \end{array}$	$1.32 \\ 1.54 \\ 1.50 \\ 1.56 \\ 1.49$	$\begin{array}{ccccc} C(6){-}O(17) & \dots & \\ C(7){-}C(8) & \dots & \\ C(7){-}C(11) & \dots & \\ C(8){-}C(9) & \dots & \\ C(9){-}C(10) & \dots & \end{array}$	$1 \cdot 45 \\ 1 \cdot 53 \\ 1 \cdot 51 \\ 1 \cdot 51 \\ 1 \cdot 51 \\ 1 \cdot 59$	$\begin{array}{cccc} C(10){-}C(15) & \dots \\ C(11){-}C(12) & \dots \\ C(11){-}C(13) & \dots \\ C(12){-}O(17) & \dots \\ C(12){-}O(18) & \dots \end{array}$	$1.58 \\ 1.45 \\ 1.63 \\ 1.34 \\ 1.24$
		Intramoleo	ular no	n-bonded distances			
$\begin{array}{cccc} C(1) & \cdots & C(4) \\ C(2) & \cdots & C(5) \\ C(2) & \cdots & C(9) \\ C(2) & \cdots & C(14) \\ C(2) & \cdots & C(15) \\ C(3) & \cdots & C(6) \\ C(3) & \cdots & C(10) \\ C(4) & \cdots & C(7) \end{array}$	2.80 2.84 3.50 3.84 3.50 3.89 2.95 3.49	$\begin{array}{c} C(4) \cdots C(15) \\ C(4) \cdots O(17) \\ C(5) \cdots C(8) \\ C(5) \cdots C(11) \\ C(5) \cdots C(12) \\ C(6) \cdots C(12) \\ C(6) \cdots C(13) \\ C(6) \cdots C(14) \end{array}$	3.54 3.00 3.00 3.64 3.56 2.90 3.79 3.17	$\begin{array}{c} C(6) \cdots C(15) \\ C(6) \cdots O(18) \\ C(7) \cdots C(10) \\ C(7) \cdots C(15) \\ C(7) \cdots O(18) \\ C(8) \cdots C(12) \\ C(8) \cdots C(13) \\ C(8) \cdots C(15) \end{array}$	3.03 3.41 2.93 3.69 3.51 3.75 3.49 3.21	$\begin{array}{c} C(8) \cdots O(17) \\ C(9) \cdots C(11) \\ C(10) \cdots C(14) \\ C(13) \cdots O(17) \\ C(13) \cdots O(17) \\ C(13) \cdots O(18) \\ C(14) \cdots O(17) \\ O(16) \cdots Br \end{array}$	3.72 3.89 3.98 3.86 3.66 3.02 2.87 3.02
		Intermo	lecular c	listances (<4 Å)			
$\begin{array}{c} C(7) \cdots O(16)_I \\ O(18) \cdots C(6)_{II} \\ O(18) \cdots C(11)_{II} \\ C(13) \cdots O(18)_{III} \\ C(9) \cdots O(16)_I \\ O(16) \cdots C(15)_I \\ C(5) \cdots O(16)_I \\ C(4) \cdots O(16)_I \end{array}$	$3 \cdot 42$ $3 \cdot 44$ $3 \cdot 44$ $3 \cdot 49$ $3 \cdot 58$ $3 \cdot 62$ $3 \cdot 65$ $3 \cdot 66$	$\begin{array}{c} C(2) \cdots C(14)_I \\ C(13) \cdots Br_{IV} \\ O(18) \cdots C(7)_{II} \\ O(18) \cdots C(8)_{II} \\ C(12) \cdots Br_I \\ O(18) \cdots Br_I \\ C(4) \cdots C(3)_I \\ C(3) \cdots C(4)_I \end{array}$	3.66 3.67 3.68 3.68 3.69 3.72 3.72 3.74	$\begin{array}{c} C(14) \cdots C(2)_{I} \\ C(3) \cdots C(3)_{I} \\ O(16) \cdots C(4)_{I} \\ O(17) \cdots Br_{I} \\ Br \cdots C(9)_{V} \\ O(16) \cdots C(5)_{I} \\ C(8) \cdots O(16)_{I} \\ Br \cdots C(14)_{I} \end{array}$	3.77 3.78 3.79 3.85 3.86 3.88 3.91 3.92	$\begin{array}{c} O(18) \cdots C(15)_{II} \\ C(3) \cdots C(14)_{I} \\ C(3) \cdots O(16)_{I} \\ C(14) \cdots C(9)_{VI} \\ C(14) \cdots Br_{I} \\ C(15) \cdots Br_{V} \\ O(18) \cdots C(12)_{II} \end{array}$	3.92 3.94 3.96 3.97 3.97 3.98 3.99
The subscripts	refer to	the following pos	itions:				
$\begin{array}{c} I \ \frac{1}{2} + x, \ \frac{1}{2} - x \\ II \ \frac{1}{2} - x, \ 1 - y \end{array}$	y, 1 - z $y, \frac{1}{2} + z$	$\begin{array}{ccc} & \text{III} & 1\frac{1}{2} \\ z & \text{IV} & 1 \\ \end{array}$	$-x, 1 - x, \frac{1}{2} +$	$y, -\frac{1}{2} + z$ $y, \frac{1}{2} - z$	V – V	$\frac{1}{2} + x, \frac{1}{2} - y, -z$ x, y, 1	+z
			Valency	, angles			
$\begin{array}{c} C(2)C(1)C(10)\\ C(1)C(2)Br\\ C(3)C(2)Br\\ C(1)C(2)C(3)\\ C(2)C(3)\\ C(2)C(3)C(4)\\ C(2)C(3)C(4)\\ C(2)C(3)O(16)\\ C(2)C(16)O(16)\\ C(2)C(16)\\ C(2)C(16)\\ C(2)C(16)\\ C(2)C(16)\\ C(2)C(16)\\ C($	126° 124 114 122 113 122	$\begin{array}{c} C(5)C(4)C(14)\\ C(4)C(5)C(6)\\ C(4)C(5)C(10)\\ C(6)C(5)C(10)\\ C(5)C(6)C(7)\\ C(5)C(6)C(7)\\ C(5)C(6)C(17)\\ C(5)C(17)\\ C(5)C$	126° 129 121 110 109 117	$\begin{array}{c} C(8)C(7)C(11)\\ C(7)C(8)C(9)\\ C(8)C(9)C(10)\\ C(1)C(10)C(5)\\ C(1)C(10)C(9)\\ C(1)C(10)C(9)\\ C(1)C(10)C(15)\\ C(10)C(10)C(15)\\ C(10)C(10)C(15)\\ C(10)C(10)C(15)\\ C(10)C(10)C(15)\\ C(10)C(10)C(15)\\ C(10)C(15)\\ C(10)$	122° 107 116 113 108 109	$\begin{array}{c} C(9)C(10)C(15)\\ C(7)C(11)C(12)\\ C(7)C(11)C(13)\\ C(12)C(11)C(13)\\ C(11)C(12)O(17)\\ C(11)C(12)O(17)\\ C(11)C(12)O(18)\\ \end{array}$	110° 102 115 111 105 133
C(4)C(3)O(16) C(3)C(4)C(5)	$\frac{125}{125}$	C(7)C(6)O(17) C(6)C(7)C(8)	$\frac{104}{113}$	C(5)C(10)C(9) C(5)C(10)C(15)	109 108	O(17)C(12)O(18) C(6)O(17)C(12)	$\frac{116}{108}$

TABLE 3

99

Standard deviations of the final atomic co-ordinates (Å)

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
C(1)	0.034	0.030	0.031	C(8)	0.038	0.032	0.034	C(14)	0.038	0.030	0.029
C(2)	0.029	0.021	0.028	C(9)	0.033	0.029	0.039	C(15)	0.033	0.029	0.036
C(3)	0.031	0.025	0.033	C(10)	0.029	0.025	0.030	O(16)	0.028	0.019	0.023
C(4)	0.030	0.025	0.030	C(11)	0.032	0.030	0.043	O(17)	0.024	0.020	0.021
C(5)	0.031	0.028	0.030	C(12)	0.032	0.026	0.038	O(18)	0.023	0.022	0.026
C(6)	0.032	0.024	0.032	C(13)	0.043	0.041	0.049	\mathbf{Br}	0.003	0.003	0.002
C(7)	0.037	0.029	0.032								

None of the atoms of the cyclohexadienone ring is displaced significantly from the mean plane through these atoms, and it can be concluded that the cyclohexadienone system is planar. In agreement with this, the average valency angle in the ring is 120°. In the cyclohexane ring, on the other hand, the average valency angle is 111°, and the ring adopts the expected chair conformation. In the five-membered lactone ring the average valency angle is 105°, in excellent agreement with the average values for five-membered rings in other molecules, e.g., hydroxy-L-proline (106°),¹² isoclovene hydrochloride (105°),¹³

J. Donohue and K. N. Trueblood, Acta Cryst., 1952, 5, 419.
 J. S. Clunie and J. M. Robertson, J., 1961, 4382.

C(3)C(4)C(14)

109

C(6)C(7)C(11)

2-bromodihydroisophoto- α -santonic lactone acetate (105°),¹ and the ring adopts the envelope conformation with C(7) displaced by 0.61 Å from the plane through C(6), C(11), C(12), O(17), and O(18). The contribution of (III) to the molecular structure of lactones accounts for the planarity of these atoms and for the bond C(12)-O(17) adjacent to the carbon-oxygen double bond having a length of 1.34 Å, distinctly shorter than the length, 1.45 Å, of the bond C(6)-O(17).

Figure 3 shows the arrangement of the molecules in the crystal as viewed in projection along the *a*-axis. The intermolecular contacts (see Table 2) are all greater than 3.4 Å and correspond to normal van der Waals interactions; the shortest separations involve oxygen atoms.

EXPERIMENTAL

Crystal Data.—2-Bromo- α -santonin, $C_{15}H_{17}BrO_3$; $M = 325\cdot 2$. Orthorhombic, $a = 7\cdot 34$, $b = 23\cdot 34$, $c = 8\cdot 28$ Å, U = 1418 Å³, Z = 4, $D_c = 1\cdot 522$, $D_m = 1\cdot 525$ g. cm.⁻³ (flotation in aqueous KI), F(000) = 664, space group $P2_12_12_1$ (D_2^4). Absorption coefficient for X-rays ($\lambda = 1\cdot 542$ Å) $\mu = 43\cdot 7$ cm.⁻¹.

Crystallographic Measurements.—Rotation, oscillation, and Weissenberg photographs were taken with copper K_{α} ($\lambda = 1.542$ Å) radiation; precession photographs were taken with molybdenum K_{α} ($\lambda = 0.7107$ Å) radiation. The unit-cell dimensions were obtained from precession photographs. The space group was determined uniquely from the systematic halvings in the X-ray spectra. The hk0—hk6 reflexions were recorded photographically by means of an equi-inclination Weissenberg camera, and the 0kl spectra were obtained with a precession camera. The intensities were estimated visually and corrected by the usual factors (Lorentz, polarization, and rotation ¹⁴). The various layers were placed on the same relative scale by comparison of common reflexions on different photographs; the absolute scale was obtained at a later stage by correlation with the calculated structure amplitudes, $|F_c|$. In all, 1277 independent structure amplitudes, $|F_o|$, were evaluated.

Structure Analysis.—The position of the bromine atom was determined from two-dimensional Patterson syntheses and sections through the three-dimensional Patterson synthesis P(UVW) at $U = \frac{1}{2}$, $V = \frac{1}{2}$, and $W = \frac{1}{2}$. These sections are shown in Figure 4. The co-ordinates initially derived for the bromine atom were x = 0.233, y = 0.139, z = 0.230.

Structure factors based on the bromine atom alone were calculated and the value of R found

¹⁴ G. Tunell, Amer. Min., 1939, 24, 448.

$\label{eq:TABLE 4} T_{ABLE \ 4}$ Measured and calculated values of the structure factors

h	k	l	$ F_{o} $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{\rm o} $	$ F_{\mathbf{c}} $	α
0	1	54 56	55 22 6 6	447 20 8	270 90 90 270			019 <i>2</i>) tr	51 5 3年 14	50 15 58 11	180 180 0 180
0	.5	554 55	125 37 69	122 33 72	0 180 180	0	15	1010	16 12 6	15 10 8	180 270 90
0	ق	2345	25 15 24 25	22 14 19 26	90 90 270 90	0	16	50 12	7 18 68 12	8 15 62 17	270 180 180 180
0	1	6 0 1 2	-2 54 26 84	69 20 102	270 180 0 0	0	17	3 4 5 1	49 20 27 10	50 23 25 5	0 0 180 270
		5 456	64 18 35	67 22 23 33	180 180 180	ο	18	5⇒60	13 11 52	0 3 10 61	90 90 270 180
0	5	1 2 3 4	59 55 49	74 3 10 53	270 270 90 90			1 2 5 4	ົິ 56 12 50	11 54 7 24	160 0 180 180
0	6	تى 0 ئارت	2 16 24 37	15 78 53	270 270 0 0	0	19	56910	17 17 11	15 1 9	0 0 90 90
		2045	51 53 27 37	56 64 28	180 180 0	ſ	50	4 56 0	8 9 7	9 8 6 11	90 270 90
0	7	10121	25 19 13	25 25 14	180 270 90	C	20	120	55 9 14 28	29 1 14	0 0 180
0		74 56	11 3 15	1 0 18	270 90 90	0	21	1200	26	535	90 270 270
0	0	123	50 12 67 51	59 48 76 56	180 180 0	0	22	76010	5 25 11	26 26 21	270 90 0 180
0	9	561	19 18 31	22 22 37	180 180 90			こう4 56	2000000	15 20 0	100 0 0 180
		23 4	15 22	17 23	270 90	0	23 01	16	6	18	90 270
0	10	0 1 2	11 79 51	14 93 56	180 180 0	0	24	1207	28 18 24	27 11 17	
		う 4 56	51 28 21 20	58 27 22 25	0 180 180 0	о	25	4 5G QI	15 9 7 5	10 10 5 5	180 180 0 270
0	11	1 2 う 4	45 13 19 20	46 14 16 22	270 90 90 90		_	5-7-5-6	9 ラ ジ	6 3 1 1	90 270 270 90
0	12	560 1	8 6 16 70	9 5 9 63	270 270 180 0	0	26	01222	11 21 21 15	10 13 19 9	180 0 180
		2 3 4 5	15 29 39 41	20 30 46 42	0 180 180 0	ο	27	4 524	12 3 4	15 4 5	180 0 270 270
0	13	6 1 2 5	15 20 4	16 6 19 1	0. 270 270 270	0	28	0 1 2 2	13 6 15 1 <u>5</u>	8 7 10 10	0 0 180 180
0	14	4 5 0 1	17 18 60 54	15 14 62 #2	270 90 0 0	0 0	29 30	4 1 0 1	6 6 10 9	8 4 9 11	0 90 0 180

				Т	ABLE 4	(Contin	ued)				
h	k	l	$ F_{\rm o} $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{o} $	$ F_{\rm c} $	α
1	0	1 2 う 4 5	7 61 33 9 18	10 68 35 10 20	90 180 270 0 90			コロワち	40 91 5 44	3年 80 50 4	85 90 15 257 171
1	1	6 01 210∓5	17 10 109 46 51 48	18 14 155 63 77 59	180 270 251 266 84 85 285	1	12	10 01 210-4	21 14 14 15 15	24 15 17 7 5 14 3	-88 90 217 117 927 911
1	2	10012104 5	1528 1528 1522 1522	16 74 37 17 11 21	264 90 185 271 268 190	1	13	NO O H Q iへキ u	77 17 40 25 59 29	18 18 18 18 61 270	155 90 88 276 277 99
1	3	NO O H Q ID 4 5	42 42 68 28 62 12	>う 5540 うち540 うち40	502 270 226 86 78 271	l	14	N6 O H NIN≓ u	20 13 10 11	22 25 12 11 16	102 301 90 104 199 267 196
1	14	NO O H Q D ≠ 5	542 542 22 542 542 56 22 16	551 50 19 68 20	90 90 162 185 527 239 318	1	15	うて 〇 千 む う キ に	17 52 25 25 25 25 25 25 25	10 57 24 23 24 20	72 90 282 265 80 100
1	5	NO O I 2104 5	554 94 59 41	28 11 114 74 74 746 59 45	46 270 102 87 279 266 91	1	16	0 0 1 0 0 0 0	29 21 11 17 45	>0 18 11 17 *	250 275 90 135 227 29 105
1	б	NG O I なうみ 5	11 18 29 24 20 15	・ 18 41 27 21 1 ⁴	295 90 76 130 246 518 281	1	17	このしょうかが	20 72 19 51 45 22	21 7 15 21 39 38 17	195 199 270 289 39 39 265
1	7	NO 0 1 ロンキ 5	14 87 36 59 42 13	14 100 43 70 75 15	201 90 98 268 302 90	1	18	00 1 था ∩ # 5%	12 13 12 18 6 8 9	15 12 10 18 5 10	249 85 554 98 500 500
1	8	NO 0 1 2 10 4 5	21 7 25 15 22 9	25 15 15 21 21 21 21	275 90 90 11 298 40 177	1	19	0 0 H (1) -11 UV	24 25 11 51 18 12	24 20 15 28 18	270 71 85 269 255 100
1	9	NO O I Q P 4 5	17 46 86 35 9 40	17 41 99 1 41 44	295 90 267 291 88 197 267	1	20	0 0 0 0 0 0 0	15 10 4 4 4	9 11 9 6 6 2 2	70 270 172 172 11 216 149
1	10	100101-	6 26 29 7 10 14	9 24 28 8 5 17	290 90 308 210 260 139	Ţ	51	0 H N i7-t i510	42 20 16 20 24 12 17	25 22 10 24 20 11 13	90 86 279 270 104 85 268
-		56	4. 11	5 11	158 258	l	22	1 2 2	10 6 6	946	20 269 2
Ť	ΤT	υ	105	112	270			4	5	5	61

				Т	ABLE 4	(Contin	nued)				
h	k	l	$ F_0 $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{0} $	$ F_{\rm c} $	α
1 1	28 29	1 0 1 2	7 11 6 16	10 3 14	66 90 237 275	2	7	0 1 2 2	13 3 41 10	11 8 42 12	0 257 270 322
2	0	0 1 2 1 2 1 2	132 11 45 14	210 5 53 15	180 90 0 270	2	8	± 560	15 11 12 30	17 15 12 29	72 169 234 180
2	l	4 56 0 1	60 4 37 33	75 1 41 32	180 90 0 180			12う+ 5	29 47 28 32 20	25 54 26 34	255 348 197 174
		1234 5	23 20 20 13	26 26 2 ⁴ 15	シン 329 35 17年 295	2	9)6 0 1 2	13 13 44 24	17 12 40 24	244 180 275 18
2	2	16 0 1 2	9 120 110 33	-8 131 118 30	57 0 15 204	2	10	54 50	5 10 3 29	ћ 10 2 17	124 225 280 0
_		ÿ4 56 c	59 23 26	69 25 26 6	184 342 358 357			1234 5	27 61 30 51	47 63 39 32	346 181 181 9
2	2	0123	52 48 25 20	55 28 23 23	352 62 222	5	11	N L O O'L	28 10 21 15	9 9 20 10	196 0 7 210
2	şt	- 56 0 1	20 22 17 55 17	23 14 58 11	290 290 190			- 7 4 56	16 11 21	18 11 24 1	185 295 46 165
		2545	60 46 38 8	71 49 45 8	185 350 4 182	2	12	0125	34 67 33 30	39 63 38 30	0 182 182 350
2	5	6 0 1 2	43 57 35 22	47 52 39 23	184 0 347 180	2	13	‡56 0 1	22 36 38 38	26 36 37 37	0 168 343 0
2	5	24 56 0	21 22 14 14	20 29 17 15	94 292 85 147 180			コンラキら	19 5 19 15	17 1 18 13	180 16 64 255
2	0	コロラキ	43 27	75 50 54 25	189 255 256 210	2	lh	0 1 2	-1 51 13 52	7 49 16 30	155 180 212 359
1	23	5650	28 8 12 9	5 5 14	160 20 144 90			:>≞† 56	26 34 20	31 35 10 18	351 175 150 359
		1274	35 13 19 7	26 18 15 9	269 275 80 107	2	15	12104 5	5 10 8	17 2 14 6	190 59 545 187
1	24	シュッショ	22 5 10 6	17 4 9 4 9	209 250 259 90 167	2	16	00012	94 24 58	9 27 55 13	10) 301 180 35 ⁴ 353
1	25	5601) 3 35 6	う 3 25 7	19 64 270 250	3	17	5560	29 20 6 14	28 17 5 11	187 13 266 180
1	26	014 N 12	28 11 9 3	21 12 6 5	86 265 191 72			12 うり く	15 15 7	16 56 5	337 40 125 251
l	27	4 50 1	4 26 <u>28</u> -	4 2 0 21	226 210 270 96 318	2	18	0 0 ≠ 176	40 26 8 14	5 32 26 10 12	+0 0 7 10 181
		3	18	15	271	2	19	ŏ	- <u>s</u>	4	0

				T	ABLE 4	(Contin	nued)				
h	k	l	$ F_0 $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{o} $	$ F_{\mathbf{c}} $	α
2	20	н аюр р о н о н о р	5 27 13 19 20 5	7 21 50 52 18 14	555 254 214 358 180 190 355 4	3	ų	3456012D	22 26 18 13 31 19 22	27 25 17 13 31 25	261 102 86 273 90 100 518 290
2	21	56 1 αρ₽	19 11 10 7 5	15 22 12 10 8 6	176 10 129 208 343 342	3	5	14 56012	7 11 15 8 41 36	8 14 15 1 46 40	17 87 182 90 2 ⁴ 3 260
2	22	5 0 1 2	24 6 28	5 25 25 25	199 180 110 2	_	ć	う4 56	41 19 51 15	43 17 31 14	89 101 275 120
2	23	046023	15 21 12 17 8	7 19 13 10 6	198 164 359 180 48	>	6	0120	ック ラリ 29 25 16	30 33 34 26 16	90 175 232 51 93
2	2 ¹ ;	7# 5\° 0	5 5 15	4 4 7	183 278 9 0	3	7	21001	14 92 10 49	14 83 15 52	290 331 270 218 98
		1 2 つれ 5	20 17 21 10	19 10 17 7	3 176 184 31 353	3	8	34 56 0	10 34 8 19 18	7 36 9 21 16	9 264 286 77 270
2	25	16 н о н	2 10 5	2 7 3 5	157 5 167 355			1 2 3 4	17 54 24 11	20 30 28 9	258 124 126 247
2	26	JO1 254 E	15 17 17 11 7	1 ¹ / ₁ 10 15 7 8	171 185 559 553	3	9	560123	9 12 17 76 18	10 8 17 77 18 35	299 211 270 81 117
2	27	001027	чө 5 ө 5	6 4 7 4	190 84 180	3	10	74 50 1	10 30 19 37	20 25 25	242 242 94 270 158
2	28	4 0 1 2	2 11 7 16 7	1 10 7 12	7 180 150 356			2 34 56	22 11 18 17	26 9 19 19	55 290 516 69
5	29	o ı	「うう	02	0 249	3	11	0	67 6	71	90 29
3	0	21224	1 48 14 24 5	50 15 26	270 180 90 180	-	10	274560	20 8 33 7 27	274 32 28	201 115 84 224 266
5	l	500 0 1 21	16 15 80 59 51	16 17 80 61 57	270 0 270 80 89	2	TS.	12345	7 22 6 15	258 22 10 152	90 135 257 309 95
3	2	54 56 0 ∎	54 25 35 35 37	59 25 25 25 25 25 25 25 25 25 25 25 25 25	274 248 101 59 270	3	13	000 12 20	26 29 29	08 25 34 23 34	270 270 276 98 85
		I 21 70	21 19 24 16 23	21 20 22 12 21	108 232 310 155 113	3	1 4	14 5601	15 14 8 7 15	11 14 8 7 14	246 278 261 90 286
3	3	0 1 2	27 12 42	30 12 46	90 49 254			2 3 4	7 22 17	8 21 14	298 10% 3

				T.	ABLE 4	(Contin	ued)				
h	k	l	$ F_{0} $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{0} $	$ F_{\mathbf{c}} $	α
う	15	560H2P	18 4 30 10 41 27	20 37 27 37 27	206 274 270 79 100 277	う 34	27 28 0	キーファー	2286 9757 92157	17 8 116 21	117 275 85 61 90
ž	16	4 56 0 H a p =	15 15 22 2 ⁴ 70	17 15 20 16 24 24	275 120 89 270 55 42	Į,	l	2040125	227 275 150 505 331	35 33 16 38 31	180 90 0 180 296 155
3	17	560127J	10 9 10 39 31 34 6	10 99 う1 25 2 3 2 2 3 4	209 87 90 76 277 264 146	4	2	74 56 0 1 2 1	2356194	21 14 51 37 12	117 27 208 180 181 32
3	18	5601275	7 10 8 23 22 10	8 9 4 21 19 8 9	57 283 90 129 187 319	<u>1</u> ;	3	<u>7</u> 4 56 1 2 う↓	16 22 25 25 19 14	16 25 24 28 18	161 180 178 174 185 25
3	19	NG O H N N-4-	21 21 9 4 16 17	4 20 56 12 17	221 90 281 255 96 80	Ц.	1¦-	- 56 O H Q P	19253 3453 10	17 859 12 17 859 12 14	156 90 180 54 188
3	20	560H2P4	14 9 11 13 7 12 10	12 9 12 8 7 10	261 252 90 21 232 67	4	5	4 560123	20 6 25 16 7 28 7	18 5 24 13 25 25 7	191 18 8 180 5 5 257
3	21	560 H Q N#	3 9 31 17 14 7	10 18 17 10 10 10	154 309 270 285 81 286	2;	6	5000 H ແທ	25 16 17 48 28 28	24 17 15 44 24 24	146 221 335 0 24 183
3	2 2	- 560 0 H a 19-	18 7 12 15 4 13	10 7 14 20	247 77 270 278 46 129	Ŀ,	7	74 56 0 H 2	19 22 10 10 43 20	17 23 9 10 40 20	45 540 221 0 1
3	23	456 012 0	54 4 10 26 14 18	4 2 9 20 15 13	196 272 108 270 82 75 263	1j	8	3456012	24 5 9 12 21 15 27	22 6 9 11 17 11 28	169 254 5 141 0 172 170
3	24	500120-	13 27 57 9	10 1 7 7 7 7	95 21 270 70 90 517	2 .	9	194°56010	27 195 10 50 190	2 39 6 11 30 17	7 347 209 175 0 72
3	25	* 50 H 2 P	56 1 <u>7</u> 18	6 5 12 7 16 5	296 150 90 275 288	<u>1;</u>	10	2104 56 0	22 19 5 21 16	21 6 19 5 20 8	206 212 0 31 177 180
3	26	4 0 1 2 0	12 7 7 8 6	13 56 7 5	80 90 82 259 288			ユ 204 5	27 35 30 19 15	28 31 29 18 15	171 548 354 186 140

				T.	ABLE 4	(Contin	eued)				
h	k	l	$ F_{0} $	$ F_{\rm c} $	α	h	k	l	$ F_{0} $	$ F_{\mathbf{c}} $	α
4	11	6	76	8 12	349 0			2	58	3 9	336 348
		1 2 3	26 11 12	34 7 12	188 350 1	<u>1</u>	25	4 1 3	13 6	10 6	165 178
Ļ	12	50	17 17	15 16	216 180	<i>1</i> }	26	1	8 10	68	19
		2	14 11	18 12	550 347 190	h-	27	2 0 1	4 2 5	6 5 3	196 180 341
		4	19 23	22	160 2 777	5	0	i 3	35 28	30 26	90 270
<i>ι</i> ,	13	0 1	11 7	10 5	180 337			4 5 6	12 12 5	13 12 4	90 180
		2 3	12 16	1 ¹ / 11	332 182	5	1	0	16 %6	16 44	270 263
		5	18 10	14 10	65 342			2 5 4	20 19 25	20 16 23	246 101 73
4	14	0 1	24 15 20	24 17	0 6 177	-	0	560	13 7	9 7	321 255
		こう 4	14 23	14 21	197 2	5	2	1 2	27 23	22	247 289
lı.	15	560	5 10 24	3 9 17	49 197			3 4	6 20	17	147 91 307
	<u> </u>	1 2	23 18	22 14	334 214	5	3	0 01	16 16	14 17	270 270
		ジ 4 5	18 10 1	19 10 2	172 315 12			1 2 3	18 21 8	19 21 7	278 95 130
ų.	16	6	5 33	4 30	112 183			4 6	24 13	25 13	267 96
		2 5 4	10 17 6	15 16 7	559 22	5	4	1 2 3	36 12 13	35 11 15	256 68 71
1;	17	50	13 21	12 16	181 0			4 5	11 17	-8 15	280 273
		1 2 3	13 17	14 14 14	204 355	5	5	6 0 1	6 30	4 10 29	270 270 83
		4; 56	8 10	986	351 158 232			23	12 17	13 17	84 270
4	18	0 1	34 8	25 2	180 268			÷ 56	13 13 4	12 4	250 97 42
		2 3 1	20 9 15	18 6 13	357 193 163	5	6	0 1	28 6 24	28 6 23	270 93
4	19	60	-8 21	7 12	337 180			2 う 4	16 23	13 18	259 295
		2 ジェ	12 6 7	9 8 5	58 20 167	5	7	560	58	3 8 21	69 121 90
4	20	51	5 12	7 14	185 558)	I	i 2	12 25	10 24	62 246
		3 4 5	15 5	13 3 10	171 89 1			ろ 4 5	8 24 4	19 4	240 98 55
ц.	21	ŏ 1	7 16	-8 11	180 222	5	8	б 1	16	7 16	235 85
		2 3 5	598	.7 5 7	257 191 14			2 5 4	18 15 18	16 16 15	280 278 63
Ъ,	22	60	16		44 0	-	0	560	8	95	110 1 <u>4</u>
		23	20 4	18 1	279 189 338	5	9	1 2	288	25 10	256 211
2Ļ	23	0	11 15	12 8 13	1 0 188	=	10	350	4 18 22	9 17 18	98 281
		4 5	5 8 7 2 8 7	19 8 4	200 250 27	2	10	1	53 13	26 15	279 277
4	2 ¹	0 1	11 13	7 12	180 173			うれ	12 11	12 11	93 103

				T	ABLE 4	(Contin	uued)				
h	k	l	$ F_{0} $	$ F_{\rm c} $	α	h	k	l	$ F_0 $	$ F_{\mathbf{c}} $	α
5	11	56 0	12 4 46	9 5 44	262 261 270	5	25	う 0 1 2	58 52	3 8 4 8	94 270 285 79
		2 3 4	26 4 18	24 1 17	108 243 236	6	0	0 2 う 4	57 16 11 10	59 15 10	180 0 270 180
5	12	0001	27 6	8 23 9	104 270 199	6	1	6 0 1	-4 38 21 17	6 34 21 18	0 180 147
		2345	18 23 4	18 19 4	90 282 300			234 54	14 16 6	13 16 5	37 180 181
5	13	6 1 2 3	6 14 7 25	6 15 3 23	109 124 230 267	6	2	0127	12 14 6	14 13 4	20 45 54
5	1 4	4 5 1 2	15 14 20 9	12 12 19 11	83 86 95 114	6	3	250 1	19 12 11 19	13 11 15	166 0 358
5	15	34 50	9 8 14 23	9 8 13 22	285 194 56 90			2345	25 11 11	23 11 11	19 191 140 331
		1 2 3 5	13 17 6 8	10 19 5 7	283 273 140 19	6	4	6 0 1 2	8 13 12 10	16 9 11	255 0 280 184
5	16	6 0 1 2	9 23 8 16	10 17 6 14	271 90 177 249	6	5	3 4 6 0	11 6 11 24	9 5 11 25	88 190 0
5	17	4 56 1	7 8 10 6	7 8 11 6	80 154 251 247			1 2 3 4	12 20 7 8	12 21 6 9	34 157 177 337
		2 3 4 5	15 18 9 8	13 16 9 9	88 92 3 10 226	6	6	6 0 1 2	11 9 8 14	11 9 8 14	152 180 197 20
5	18	6 1 2 3	8 16 14 15	8 11 9 12	122 288 51 68			34 56	18 7 7 6	17 5 7 6	354 246 141 55
5	19	4 5 6 0	5 7 2 11	1 6 2 11	294 305 352 270	6	7	0 1 3 4	11 14 17 7	8 14 14 7	180 185 356
2	_,	1 2 3 4	15 7 11	10 6 6 7	83 25 285 276	6	8	56 0 1	15 4 8 6	14 4 8 6	182 265 180 23
5	20	6012	3 11 5 10	4 11 4 10	59 270 203 114			2 34 5	14 9 11	14 8 11 6	13 195 151 7
5	21	3 4 0 1	5 10 10 11	4 9 8 10	209 291 90 93	6	9	6 0 1 2	5 26 10 18	6 26 9 17	314 180 220 7
		2345	3 10 6 3	3 10 7 5	192 253 83 73	6	10	3 4 0	հ 7 7 8	2 7 8 7	146 196 14 0
5	22	0 1 2 3	7 11 38	4 11 1 9	90 68 58 274			1 2 3 4	20 9 8 8	20 9 8 8	353 142 151 79
5	23	1-1-1-2-3	3 11 5 7	28 76	70 288 272 86	6	11	5 6 0	8 4 8 19	9 5 4 19	316 170 0
5	24	4 1 2	i 6 7	4 4 7	44 268 288			235	-6 13 20	-6 12 17	214 190 12

				T	ABLE 4	(Contin	nued)				
h	k	l	$ \mathbf{F}_{\mathbf{o}} $	$ F_{\mathbf{c}} $	α	h	k	l	$ F_{o} $	$ F_{\mathbf{c}} $	α
6	12	0 1 2 2 2	15 15 4 7	3 12 4 8	0 142 174 341	7	5	б он аг	بد 9 11 8	3 8 13 6	232 90 255 247
6	13	- 560 0 1 0	10 55 24 6	12 3 22 2 13))9 171 139 0 159	7	6	70 0 1 2 M	25 13 12 11	5 14 11 12	154 90 266 269
6	1ħ	2 M = 56 0 n	1) 12 9 7 4	10 8 6 5 9	130 357 18 241 176 180	7	7	7460181	- 8 う8 4 4 4	095555	90 310 270 213
6	1 5	123450	9 11 4 8 <u>4</u> 7	0 10 28 3 3	176 18 325 179 323 180	7	8	?≓ 56 H Q	7 5 5 15 10	3 7 5 14 10	260 281 56 271 104
		12345	11 7 15 6 5	10 6 16 6	172 9 356 180 125	7	9	34 56 0 r	10 12 5 3 9	11 10 5 2 5	107 260 280 159 270
6	16	6 0 1 2 3	5 59 6	3 4 14 8 8	.327 0 351 327 173	7	10	123010	10 6 7 12 17	7 7 13 13	57 100 256 270 99
6	17	560123	7 1 5 17 7 10	6 76 12 98	25 272 180 349 349 177	7	11	2345600	10 7 9 5 3 2 12	59 55 12 12	999 270 257 75 90
6	18	4 50 1 27	63748 8	8 3 9 4 7 7	202 2 0 322 195	7	12	434600	-58 16	58 4 12	258 258 262 90
6	19)4 0 1 2	27957	2 7 7 7 5	337 0 19 ¹	7	13	13413	12 9 8	10 8 12 7 7	287 115 501
6 6	2 0 21	4 1 2 4 1	6 8 3 5 10	66339	333 197 226 329 188	7	11	5 0 1 2	3 4 14 3	2 4 11 5	241 304 270 264 245
6	22	2 3	3 5 5	655	177 10 180	7	16	う 5	9 4 6	8 6	110 250
6	23	20	76 5	7 7	0 180	1	1)	1 2	36	3 7	194 108
7	0	1 1 7	3 22	23	199 270	7	16	5	13 14	12 12	270 87
7	1	5 1	13 11	14 14 12	90 270 72	7	17	1 2	4 4 6	8 3 6	220 65 279
		2 4:	873	9 7	81 222 206	7	18	312	7 7	6 8 6	273 130 200
7	2	1 2 3 4	8 13 4	7 14 3	290 42 74 274 280	7	19	3 0 1 2	25 74 3	5833	258 90 167
7	3	ירס א- ז. ור	лю 6 5 r	788 74	209 93 270 91	7 8	20 1	0	15 17 8	8 17 8 8	90 90 300 172
7	2;	1 2 3 4 5	- 98 12 57	10 7 12 58	84 314 266 75 84	8	2	シ 4 5 0 1	8 10 2 7 9	8 11 2 8 9	189 0 28 180 240

TABLE 4 (Continued)											
h	k	l	$ F_0 $	$ F_{\rm c} $	α	h	k	l	$ F_0 $	$ F_{\rm c} $	α
8	5	0 H 210-2-1	7 11 8 8 1	53964	180 179 207 21 309	8	7	ธาลอุธ	ନ୍ଦ୍ରରାହ ହାଏ	69564	27 ⁴ 358 57 166 29
8	4	555	552	6 3 9	147 132 47	0 8 8	9 10	202	6	8 7 2	107 196 337
8	5	Ja Nit L	8550		351 293 185	8	11	コシュ	12 8 4	12 9 5	179 547 342
8	6	りつき	255	4 5 5	191 103	8 8	19 14 15	221	₹ 52 5	6 3 7	5 17 128 352

to be 43.6%. The measured |F| values and the calculated phase angles were then used to evaluate a three-dimensional electron-density distribution. The almost special values of the x- and z-co-ordinates led to spurious planes of symmetry in the Fourier synthesis, but nevertheless we were able to recognise that the cyclohexadienone ring system lay approximately parallel to the *bc*-plane and we were eventually able to assign approximate co-ordinates to all the carbon and oxygen atoms apart from the controversial methyl group.

The inclusion of the fourteen carbon and three oxygen atoms in the calculation of a second set of structure factors caused the value of R to fall to $39\cdot1\%$. The next electron-density distribution gave improved co-ordinates and the value of R was 34.5%. In the subsequent Fourier synthesis C(13) was prominent (peak height >3 eÅ⁻³), and with the inclusion of all the carbon and oxygen atoms in the calculation of a fourth set of structure factors the value of Rwas reduced to 30.4%. Five further rounds of Fourier and structure-factor calculations were carried out; both F_{o} and F_{c} syntheses were evaluated, atomic co-ordinates obtained by numerical interpolation in the results, and errors due to termination of series corrected. The value of R was $23 \cdot 3\%$.

For the final stages of the analysis Rollett's least-squares programme ¹⁵ for DEUCE was used to refine positional and anisotropic thermal parameters for all atoms other than hydrogen. After five cycles of calculations the value of R was 15.2% and as the parameter shifts were small the refinement was terminated.

The theoretical atomic scattering factors used in all the structure-factor calculations were these of Berghuis et al.¹⁶ for carbon and oxygen, and the Thomas-Fermi values ¹⁷ for bromine. The final calculated structure amplitudes and phase constants are listed with the measured values of the structure amplitudes in Table 4. The phase constants of Table 4 and the measured structure amplitudes were used to calculate a final three-dimensional electron-density distribution which is shown in Figure 1 by means of superimposed contour sections drawn parallel to (100). All the atoms are well resolved, and the oxygen atoms have distinctly higher peak heights than the carbon atoms.

The final atomic co-ordinates, molecular dimensions, and some non-bonded distances are listed in Tables 1 and 2. The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by means of the equation:

$$\sigma^2(x_i) = \sum w_j (\Delta F_j)^2 / [(n-s) \sum w_j (\partial F_j / \partial x_i)^2].$$

The results are listed in Table 3. The parameters defining the anisotropic thermal vibrations are shown in Table 5; they are values of b_{ij} in the equation:

$$\exp\left(-B\,\sin^2\,\theta/\lambda^2\right) = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{33}l^3 + b_{12}hk + b_{23}kl + b_{13}hl)}$$

¹⁵ J. S. Rollett, in ref. 10b, p. 87.
 ¹⁶ J. Berghuis, IJ. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, *Acta Cryst.*, 1955, 8, 478.
 ¹⁷ 'Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Berlin, 1935, 177 'Internationale Tabellen Zur Bestimmung von Kristallstrukturen, "Borntraeger, Bestimmung von Kri

vol. II, p. 572.

TABLE 5

Anisotropic temperature factors $(b_{ij} \times 10^5)$

								-					
Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{23}	b_{13}	Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{23}	b_{13}
C(1)	4001	298	2694	-162	181	157	C(11)	2873	220	3682	45	69	465
C(2)	2845	164	2323	-368	-238	615	C(12)	2624	155	2960	394	-732	-794
C(3)	1805	240	3239	-75	-169	1165	C(13)	4636	539	4527	-905	-205	452
C(4)	1932	240	2246	-240	-294	418	C(14)	4642	310	1814	-98	179	-613
C(5)	1640	346	1911	105	-128	-1272	C(15)	2963	275	2273	-45	-202	-927
C(6)	2122	224	2306	30	-196	-707	O(16)	5884	270	2951	-605	218	-601
C(7)	3567	201	2356	-123	177	-536	O(17)	3119	358	2173	-32	-478	530
C(8)	4234	358	958	-76	-10	287	O(18)	3476	380	5819	-26	-865	583
C(9)	3197	245	2989	92	-132	912	Br	3629	244	3173	-172	-154	267
C(10)	2375	280	2492	-367	462	-508	$(B = 3 \text{\AA}^2)$	22752	264	2099	0	0	0)

We are grateful to Professor D. H. R. Barton, F.R.S., for a supply of 2-bromo- α -santonin, and to Professor J. M. Robertson, F.R.S., for his encouragement. The calculations were performed on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. One of us (J. D. M. A.) is indebted to the D.S.I.R. for financial support.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW W.2.

[Present address (G. A. S.): DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, U.S.A.] [Received, April 20th, 1965.]